

SPECIFICATION FOR White LED

LML-LK-WZ-3W

- Serial Number: LML-LK-WZ-3W-RunNo-BinNo-C1.6T-CRI-CCT
- 3W maximum power capability
- Lead-free reflow soldering application
- Built-in ESD protection device
- RoHS compliant

Ven	Customer	
Written	Approval	Approval

Lumens CO., LTD.

456 Gomae-Dong, Giheung-Gu, Yongin-Si, Gyeonggi-Do 449-901 Korea http://www.lumens.co.kr

1. Product description

* Description

- The LK series LED is designed for the high power operation to get the high flux output applications.
- It incorporates the state of the art SMD design and high reliable material.
- It is ideal for the light source for general illumination applications, custom designed solutions.

* Features

- Maximum drive current up to 1,000mA
- Low thermal resistance as low as 4 ℃/W
- Wide viewing angle of 120~140 degrees
- Reflow soldering with JEDEC JSTD-020C compatible
- RoHS compliant

* Applications

- General luminaire
- Bulb
- Downlight

2. Absolute maximum ratings

Parameters	Symbol	Min Value	Max Value	Unit
Power dissipated	Pd		3.34	w
Rated forward current	If		1,000	mA
Allowable peak forward current(1)	Ip		1,300	mA
Maximum junction temperature capability	Тj		135	℃
Electrostatic discharge threshold(2)	ESD		±5,000	V
Operating temperature	Topr	-40	+85	℃
Storage temperature	Tstg	-40	+85	°C
Soldering temperature(Reflow)	Tsol		260℃, 10s	℃, s
Soldering temperature(Hand)	Tsoh		350℃, 3s	℃, s

⁽¹⁾ Ip measured at 1/10 duty cycle, 0.1ms pulse width.

3. Electro-optical characteristics (Ta=25°C, If=350mA)

Parameters	Symbol	Condition	Min.	Тур.	Max.	Unit
Luminous Flux	Фv	If=350mA	110		150	lm
Correlated Color Temperature	ССТ	If=350mA	2,700		8,000	К
Color Rendering Index	CRI	If=350mA		80		-
Forward voltage	Vf	If=350mA	2.8		3.1	٧
Viewing angle FWHM	2θ1/2	If=350mA		130		deg
Thermal resistance junction to solder pad	Rthj-s			4		°C/W
Reverse voltage	Vr	If=10uA		0.6		٧
Temperature coefficient Vf	TCv	If=350mA		-3		mV/°C

⁽¹⁾ Parameters are measured by CAS-140 of Instrument System CO.,LTD.

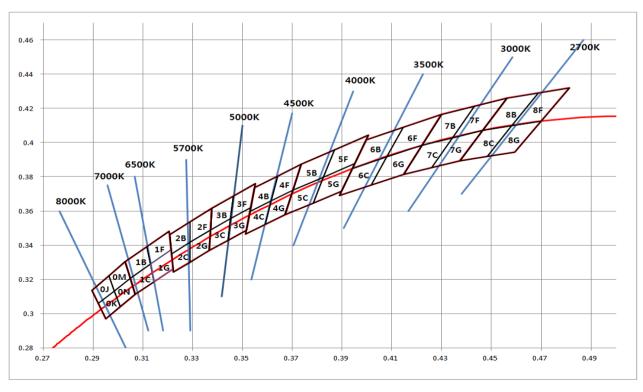
⁽²⁾ ESD HBM class 2 per Mil-Std-883D method 3015.

⁽²⁾ Measurement accuracy : $\Phi v(\pm 10\%)$, Vf($\pm 0.05V$).

4. Electro-optical chart

ССТ(К)	If(mA)	Vf(V)	Pd(W)	Φv(lm)	lm/W
	350	2.97	1.04	121.06	116.46
2700	700	3.16	2.21	217.29	98.27
2700	1000	3.28	3.28	277.63	84.61
	1500	3.50	5.24	356.23	67.94
	350	2.97	1.04	123.81	119.10
3000	700	3.16	2.21	222.23	100.51
3000	1000	3.28	3.28	283.94	86.53
	1500	3.50	5.24	364.33	69.48
	350	2.97	1.04	134.13	129.03
4000	700	3.16	2.21	240.75	108.88
4000	1000	3.28	3.28	307.60	93.74
	1500	3.50	5.24	394.69	75.27
	350	2.97	1.04	137.57	132.34
5000	700	3.16	2.21	246.92	111.67
3000	1000	3.28	3.28	315.48	96.15
	1500	3.50	5.24	404.81	77.20
	350	2.97	1.04	135.50	130.35
5700	700	3.16	2.21	243.22	110.00
3700	1000	3.28	3.28	310.75	94.70
	1500	3.50	5.24	398.74	76.05
	350	2.97	1.04	132.75	127.70
6500	700	3.16	2.21	238.28	107.76
6500	1000	3.28	3.28	304.44	92.78
	1500	3.50	5.24	390.64	74.50

Parameters are measured by CAS-140 of Instrument System CO.,LTD.
Measurement accuracy: Φν(±10%), Vf(±0.05V).



5. Ranks

Item	Symbol	CCT(K)	Rank	Min.	Тур.	Max.	Unit	Condition	
			Α	110	-	120			
		2700	В	120	-	130	lm		
			С	130	1	140			
			Α	110	-	120			
		3000	В	120	-	130	lm		
			С	130	-	140			
			Α	120	-	130			
		4000	В	130	-	140	lm	350mA	
Luminous Flux	Фν		С	140	-	150			
Luminous Flux		5000	Α	120	-	130	lm		
			В	130	-	140			
			С	140	-	150			
			Α	120	-	130	lm		
		5700	В	130	-	140			
			С	140	-	150			
			Α	120	-	130			
		6500	В	130	-	140	lm		
			С	140	-	150			
			1	2.8	1	2.9			
Forward Voltage	Vf	- 1	2	2.9	-	3	v		
			616.110 6	3	3	-	3.1		

⁽¹⁾ Parameters are measured by CAS-140 of Instrument System CO.,LTD.

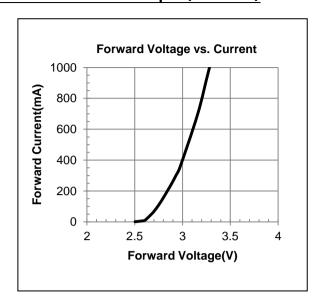
6. Chromaticity diagram

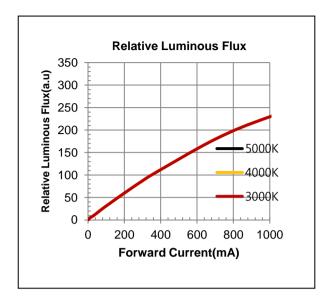
(1) Chromaticity coordinate groups are measured with an accuracy of $\pm 0.01\,$

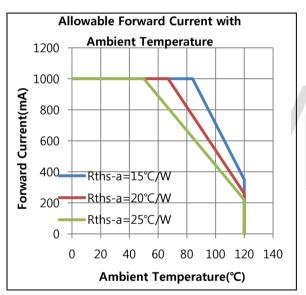
⁽²⁾ Measurement accuracy : $\Phi v(\pm 10\%)$, Vf($\pm 0.05V$).

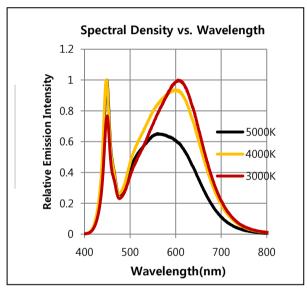
7. Correlated Color Temperature Ranges

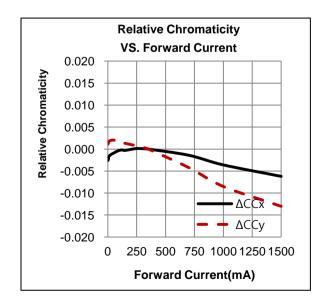
Item	CCT Ranges	CIE Ranges	Color bins
Cool-White	8000K ~ 4750K	0J ~ 3G	16bin
Neutral-White	4750K ~ 3750K	4B ~ 5G	8bin
Warm-White	3750K ~ 2600K	6B ~ 8G	12bin

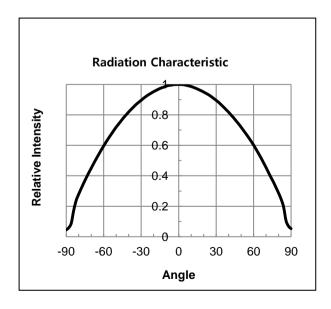

8. Chromaticity coordinates

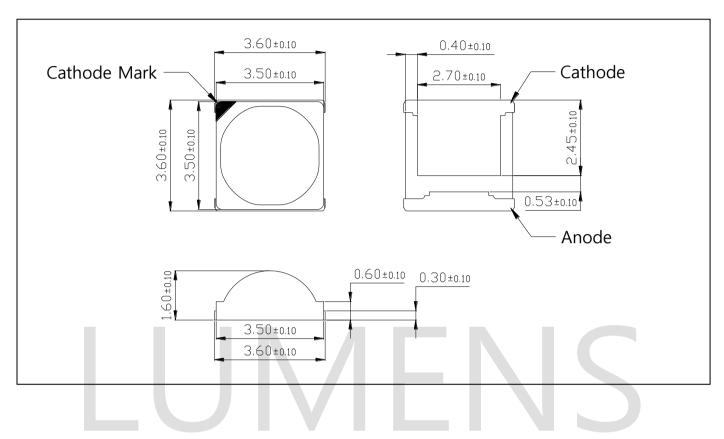

CCT	Rank	CIE X	CIE Y	CCT	Rank	CIE X	CIE Y	CCT	Rank	CIE X	CIE Y	CCT	Rank	CIE X	CIE Y														
		0.3028	0.3304			0.3376	0.3616			0.3736	0.3874			0.4299	0.4165														
	1B	0.3115	0.3391		3B	0.3463	0.3687		5B	0.3870	0.3958		7B	0.4430	0.4212														
	ID	0.3130	0.3290		30	0.3451	0.3554		36	0.3825	0.3798		/ b	0.4342	0.4028														
		0.3048	0.3207			0.3371	0.3490			0.3702	0.3722			0.4221	0.3985														
		0.3048	0.3207			0.3371	0.3490			0.3702	0.3722			0.4221	0.3985														
	1C	0.3130	0.3290		3C	0.3451	0.3554		5C	0.3825	0.3798		7C	0.4342	0.4028														
	10	0.3144	0.3186		30	0.3440	0.3427		30	0.3783	0.3646		/C	0.4260	0.3853														
6500K		0.3068	0.3113	5000K		0.3366	0.3369	4000K		0.3670	0.3578	3000K		0.4147	0.3814														
0300K		0.3115	0.3391	3000K		0.3463	0.3687	4000K		0.3870	0.3958	3000K		0.4430	0.4212														
	1F	0.3205	0.3481		3F	0.3551	0.3760		5F	0.4006	0.4044		7F	0.4562	0.4260														
	11	0.3213	0.3373		51	0.3533	0.3620		31	0.3951	0.3876		/F	0.4465	0.4071														
		0.3130	0.3290			0.3451	0.3554			0.3825	0.3798			0.4342	0.4028														
		0.3130	0.3290	3G 0.3451 0.3554 0.3533 0.3620 0.3515 0.3487		0.3825	0.3798			0.4342	0.4028																		
	1G	0.3213	0.3373		20	0.3533	0.3620		5G	0.3951	0.3876		7G	0.4465	0.4071														
	10	0.3221	0.3261		30	0.3515	0.3487	0.3487 0.3427		0.3898	0.3716			0.4373	0.3893														
		0.3144	0.3186			0.3440	0.3427			0.3783	0.3646			0.4260	0.3853														
		0.3207	0.3462	4B 0.3548 0.3736 0.3641 0.3804 0.3615 0.3659 0.3530 0.3597		0.3996	0.4015			0.4562	0.4260																		
	2B	0.3290	0.3538					0.3641	0.3804		6B	0.4146	0.4089		8B	0.4687	0.4289												
	ZD	0.3290	0.3417																	4	40	0.3615 0.3659	OB	0.4080	0.3916		OD	0.4582	0.4099
		0.3215	0.3350										0.3530	0.3597			0.3941	0.3848			0.4465	0.4071							
		0.3215	0.3350			0.3530	0.3597			0.3941	0.3848			0.4465	0.4071														
	2C	0.3290	0.3417		4C	0.3615	0.3659		6C	0.4080	0.3916		8C	0.4582	0.4099														
	20	0.3290	0.3300		4C	0.3590	0.3521		00	0.4017	0.3752		oC	0.4483	0.3918														
5700K		0.3222	0.3243	4500K		0.3512	0.3465	3500K		0.3889	0.3690	2700K	014	0.4373	0.3893														
3700K		0.3290	0.3538	4300K		0.3641	0.3804	3300K		0.4146	0.4089	2700K		0.4687	0.4289														
	2F	0.3376	0.3616		4F	0.3736	0.3874		6F	0.4299	0.4165		8F	0.4813	0.4319														
	21	0.3371	0.3490		41	0.3702	0.3722		OF	0.4221	0.3985		OF	0.4700	0.4126														
		0.3290	0.3417			0.3615	0.3659]		0.4080	0.3916			0.4582	0.4099														
		0.3290	0.3417			0.3615	0.3659			0.4080	0.3916			0.4582	0.4099														
	2G	0.3371	0.3490		4G	0.3702	0.3722		6G	0.4221	0.3985		8G	0.4700	0.4126														
	20	0.3366	0.3369		40	0.3670	0.3578		00	0.4147	0.3814		U	0.4593	0.3944														
		0.3290	0.3300			0.3590	0.3521			0.4017	0.3752			0.4483	0.3918														


⁽¹⁾ Chromaticity coordinate groups are measured with an accuracy of $\pm 0.01\,$

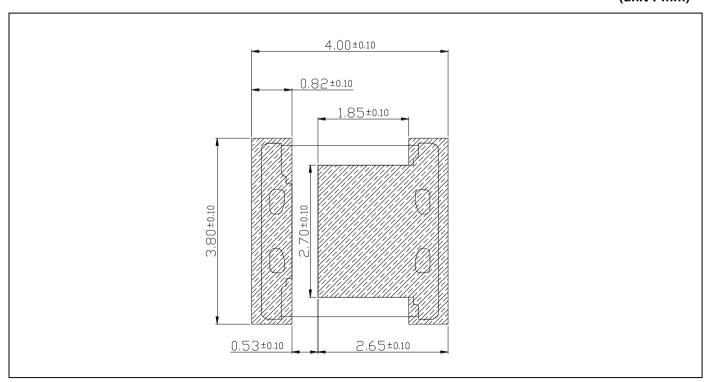



9. Characteristic Graphs(Ta=25°C)





10. Outline Dimensions


Unit: mm

- 1) Package outline: (LxWxH) of 3.5 x 3.5 x 1.6 mm.
- 2) Tolerance All measurements are \pm 0.15 mm unless otherwise indicated.

11. Recommended solder pad

(unit: mm)

12. Reliability test items and conditions

Item	Reference	Test Conditions	Duration / Cycle	Number of Damaged
Thermal Shock	EIAJ ED-4701	Ta =-40°C (30min) ~ 100°C (30min)	150 Cycle	0/30
Operating Endurance Test	Internal Reference	Ta =25°C, IF =1,000mA	1,000 Hours	0/30
High Temperature High Humidity Life Test	Internal Reference	Ta =60°C, RH=90%, IF =900mA	500 Hours	0/30
High Temperature Life Test	Internal Reference	Ta =85°C, IF =600mA	500 Hours	0/30
ESD(HBM)		±5KV at 1.5kΩ, 100pF	5 Time	0/5
Reflow	Tsor	260°C< 10sec, Reflow Soldering	3 Time	0/30

⁻ Test Board : Metal board thickness=1.6mm, Copper layer thickness=0.07mm, Rth \approx 25 °C/W

◆ CRITERIA FOR JUDGING THE DAMAGE

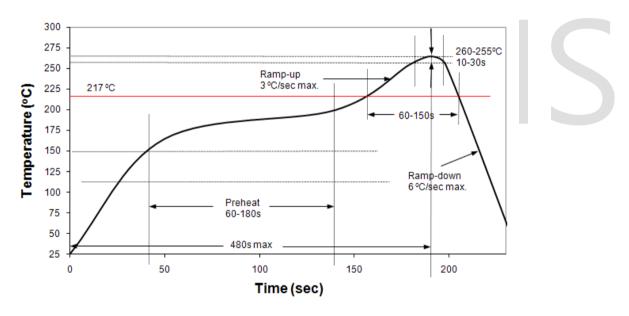
Té a una	Combal	Condition	Criteria for Judgment			
Item	Symbol	Condition	MIN	MAX		
Forward Voltage	Vf	IF =350mA	/ 1- F	USL (1) × 1.1		
Radiant Power	Ро	IF =350mA	LSL (2) × 0.7	-		

⁽¹⁾ USL: Upper Standard Level

⁽²⁾ LSL: Lower Standard Level

13. Recommended soldering temperature - time profile for reflow soldering

Surface Mounting Condition

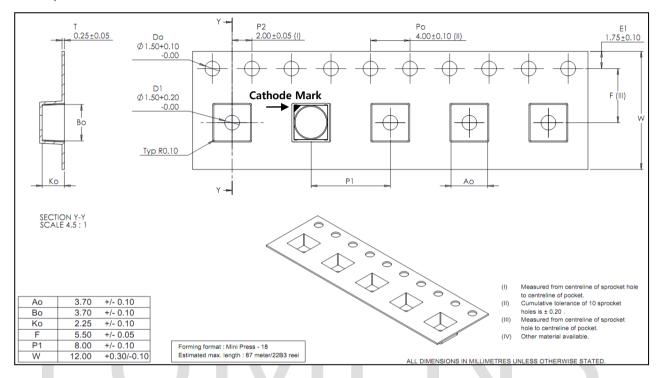

In automatic mounting of the SMD LEDs on printed circuit boards, any bending, expanding and pulling forces or shock against the SMD LEDs should be kept minimum to prevent them from electrical failures and mechanical damages of the devices.

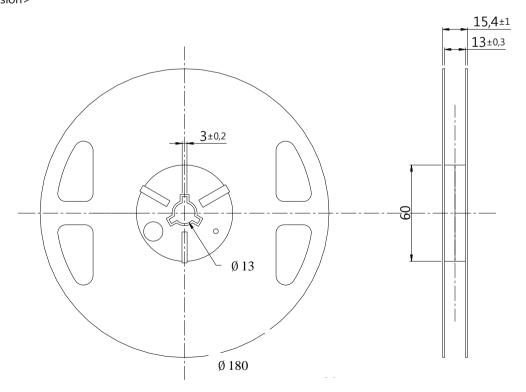
Soldering Reflow

- -Soldering of the SMD LEDs should conform to the soldering condition in the individual specifications.
- -SMD LEDs are designed for reflow soldering.
- -In the reflow soldering, too high temperature and too large temperature gradient such as rapid heating/cooling may cause electrical & optical failures and damages of the devices.
- -Lumens cannot guarantee the LEDs after they have been assembled using the solder dipping method.

Recommended Pb Free IR-Reflow Soldering Profile.

Classification Reflow Profile (JEDEC J-STD-020C)




14. Taping and orientation

- 1. Moisture proof bag.
- 2.1 Reel/bag.
- 3. Quantity: 800ea/Reel.

<Carrier tape Dimension>

<Reel Dimension>

15. Cautions

- 1 Moisture-Proof Package
 - 1.1 When moisture is absorbed into the LED package it may vaporize and expand products during soldering. There is a possibility that this may cause exfoliation of the contacts and damage to the optical characteristics of the LEDs. For this reason, the moisture-proof package is used to keep moisture to a minimum in the package.
 - 1.2 A package of a moisture-absorbent material (silica gel) is inserted into the shielding bag. The silica gel changes its color from blue to pink as it absorbs moisture.

2 Current limiting

A resistor should be used to limit current spikes that can be caused by voltage fluctuations. Otherwise damage could occur.

3 Iron Soldering

- 3.1 Hand soldering is not recommended for regular production. These guidelines are for rework only.
- 3.2 Soldering iron tip should contact each terminal no more than 3 sec at 120°C, using soldering iron with nominal power less than 25W. Allow min. 2 sec. between soldering intervals.

4 Storage Conditions

- 4.1 Before opening the package: The LEDs should be kept at 30°C or less and 90%RH or less. The LEDs should be used within a year. When storing the LEDs, moisture-proof packaging with moisture-absorbent material (silica gel) is recommended.
- 4.2 After opening the package: The LEDs should be kept at 30°C or less and 70%RH or less. The LEDs should be soldered within 168 hours (7 days) after opening the package. If unused LEDs remain, they should be stored in moisture-proof packages, such as sealed containers with packages of moisture-absorbent material (silica gel). It is also recommended to return the LEDs to the original moisture-proof bag and to reseal the moisture-proof bag again.
- 4.3 If the moisture-absorbent material (silica gel) has faded away or the LEDs have exceeded the recommended storage time, baking treatment should be performed using the following conditions. Baking treatment: more than 24 hours at 65±5℃
- 4.4 Lumens LED electrode sections are comprised of a silver-plated copper alloy. The silver surface may be affected by environments which contain corrosive gases and so on. Please avoid condition which may cause difficulty environments during soldering operations. It is recommended that the user uses the LEDs as soon as possible.
- 4.5 Please avoid rapid transitions in ambient temperature, especially in high humidity environments where condensation can occur.
- 5 Handling of Silicone Lens LEDs
 - 5.1 Avoid silicone resin parts especially with sharp tools such as pincette(tweezers).
 - 5.2 Avoid leaving fingerprints on silicone lens part.
 - 5.3 Do not apply the silicone lens part with pressure especially in SMT production. So use a proper nozzle not to press the lens part of the LED to pick and place.

6 Usage

6.1 Do not exceed the values given in this specification.

NOTE:

All the information published is considered to be reliable. However, Lumens does not assume any liability arising out of the application or use of any product described herein.

Lumens reserves the right to make changes at any time without notice to any products in order to improve reliability, function or design.

Lumens products are not authorized for use as critical components in life support devices or systems without the express written approval from the managing director of Lumens.